On numerical integration of coupled Korteweg-de Vries System
نویسنده
چکیده
We introduce a numerical method for general coupled Korteweg-de Vries systems. The scheme is valid for solving Cauchy problems for arbitrary number of equations with arbitrary constant coefficients. The numerical scheme takes its legality by proving its stability and convergence which gives the conditions and the appropriate choice of the grid sizes. The method is applied to Hirota-Satsuma (HS) system and compared with its known explicit solution investigating the influence of initial conditions and grid sizes on accuracy. We also illustrate the method to show the effects of constants with a transition to the non-integrable case,
منابع مشابه
Forced oscillations of a damped Korteweg-de Vries equation on a periodic domain
In this paper, we investigate a damped Korteweg-de Vries equation with forcing on a periodic domain $mathbb{T}=mathbb{R}/(2pimathbb{Z})$. We can obtain that if the forcing is periodic with small amplitude, then the solution becomes eventually time-periodic.
متن کاملN ov 2 00 2 On numerical integration of coupled Korteweg - de Vries System
We introduce a numerical method for general coupled Korteweg-de Vries systems. The scheme is valid for solving Cauchy problems for arbitrary number of equations with arbitrary constant coefficients. The numerical scheme takes its legality by proving its stability and convergence which gives the conditions and the appropriate choice of the grid sizes. The method is applied to Hirota-Satsuma (HS)...
متن کاملA Novel Approach for Korteweg-de Vries Equation of Fractional Order
In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...
متن کاملThe tanh method for solutions of the nonlinear modied Korteweg de Vries equation
In this paper, we have studied on the solutions of modied KdV equation andalso on the stability of them. We use the tanh method for this investigationand given solutions are good-behavior. The solution is shock wave and can beused in the physical investigations
متن کاملAdomian Polynomial and Elzaki Transform Method of Solving Fifth Order Korteweg-De Vries Equation
Elzaki transform and Adomian polynomial is used to obtain the exact solutions of nonlinear fifth order Korteweg-de Vries (KdV) equations. In order to investigate the effectiveness of the method, three fifth order KdV equations were considered. Adomian polynomial is introduced as an essential tool to linearize all the nonlinear terms in any given equation because Elzaki transform cannot handle n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008